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Abstract
Recently, by using quantized Berry phases, a prescription for a local
characterization of gapped topological insulators has been given (Hatsugai 2006
Preprint cond-mat/0603230). It requires that the ground state is gapped and is
invariant under some anti-unitary operation. A spin liquid which is realized
as a unique ground state of the Heisenberg spin system with frustrations is
a typical target system, since pairwise exchange couplings are always time-
reversal invariants even with frustrations.

As for a generic Heisenberg model with a finite excitation gap, we locally
modify the Hamiltonian by a continuous SU(2) twist only at a specific link and
define the Berry connection by the derivative. Then the Berry phase evaluated
by the entire many-spin wavefunction is used to define the local topological
order parameter at the link. We numerically apply this scheme for several spin
liquids and show its physical validity. For example, it implies that the Haldane
phase of the S = 1 chains is characterized by uniform π quantized Berry phases.

(Some figures in this article are in colour only in the electronic version)

1. Topological orders

In a modern condensed matter physics, the concept of symmetry breaking has a fundamental
importance. At a sufficiently low temperature, most classical systems show some ordered
structure which implies that the symmetry at high temperature is lost or reduced. This is
the spontaneous symmetry breaking which is usually characterized by using a local order
parameter as an existence of the long-range order. States of matter in a classical system are
mostly characterized by this order parameter with the symmetry breaking. Even in a quantum
system, the local order parameter and the symmetry breaking play similar roles and they form
a foundation of our physical understanding. Typical examples can be ferromagnetic and Néel
orders in spin systems.
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Recent studies have revealed that this symmetry breaking may not always be enough to
characterize some of important quantum states [2, 3]. Low dimensionality of the system and/or
geometrical frustrations that come from the strong correlation can prevent the formation of
local order. Especially with a quantum fluctuation, it may happen that a quantum ground state
without any explicit symmetry breaking is realized even at zero temperature. Such a state is
classified as a quantum liquid which mostly has an energy gap (this may not always be the
case). Typical examples of these quantum liquids are the Haldane spin chain and the valence
bond solid (VBS) states [4, 5]. Also some of the frustrated spin systems and spin–Peierls
systems can belong to this class [6–8]. To characterize these quantum liquids, a concept of
a topological order can be useful [2, 3]. It was proposed to characterize quantum Hall states
which are typical quantum liquids with energy gaps. There are many clearly different quantum
states but they do not have any local order parameter associated with symmetry breaking. Then
topological quantities such as the number of degenerate ground states and the Chern numbers
as the Hall conductance are used to characterize the quantum liquids. We generalize the idea
of using topological quantities such as the Chern numbers for the characterization of generic
quantum liquids [3]. This is a global characterization. When we apply this to spin systems
with time-reversal (TR) symmetry, the Chern number vanishes in most cases. Recently we
proposed an alternative for a system with TR invariance using the quantized Berry phases [1].
Although the Berry phases can take any values generically, the TR invariance of the ground state
guarantees a quantization of the Berry phases which enables us to use them as local topological
order parameters. In the present paper, we use them for several spin systems with frustrations
and verify the validity. Although the geometrical frustration affects the standard local order
substantially, it does not bring any fundamental difficulties for the topological characterizations,
as shown later. The quantized Berry phase should be quiteuseful for characterizations for
general quantum liquids [1].

Finally we mention the energy spectra of systems with classical or topological orders.
There can be interesting differences between the standard order and the topological order.
As for energy spectra, we have two situations when the symmetry is spontaneously broken.
If the spontaneously broken symmetry is continuous, there exists a gapless excitation as a
Nambu–Goldstone mode. On the other hand, the symmetry is discrete, the ground states are
degenerate and above these degenerate states, there is a finite energy gap. Note that when the
system is finite (with periodic boundary condition), the degeneracy is lifted by the small energy
gap, e−Ld /ξ [9], where L, d and ξ are a linear dimension of the finite system, dimensionality
and a typical correlation length. For the topological ordered states with energy gaps, we may
expect degeneracy of the ground states depending on the geometry of the system (topological
degeneracy). When the system is finite, we expect edge states generically [10]. This implies
that the topological degeneracy is lifted by energy gaps of the order e−L/ξ .

2. Local order parameters of quantum liquids

After the discovery of the fractional quantum Hall states, quantum liquids have been recognized
to exist quite universally in a quantum world where quantum effects cannot be treated as a
correction to the classical description and the quantum law itself takes the wheel that determines
the ground state. The resonating valence bond (RVB) state which is proposed for a basic
platform of the high-TC superconductivity is a typical example [11]. The RVB state by
Anderson can be understood as a quantum mechanical collection of local spin singlets. When
it becomes mobile under the doping, the state is expected to show superconductivity. Original
ideas of this RVB go back to Pauling’s description of benzene compounds where the quantum
mechanical ground state is composed of local bonding states (covalent bonds) where the basic
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variables to describe the state are not electrons localized at sites but the bonding states on
links [12]. This is quite instructive. That is, in both of Anderson’s RVB and Pauling’s RVB, the
basic objects to describe the quantum liquids are quantum mechanical objects such as a singlet
pair and a covalent bond [1]. The ‘classical’ objects such as small magnets (localized spins)
and electrons at the site never play major roles. The constituents of the liquids themselves
do not have a classical analogue and are purely quantum mechanical objects. Based on
this view point, it is natural to characterize these quantum objects, the singlet pairs and the
covalent bonds, as working variables of the local quantum order parameters. This is to be
compared with the conventional order parameter (a magnetic order parameter is defined by a
local spin as a working variable). From these observations, we proposed to use quantized Berry
phases to define local topological order parameters [1]. (We only treat here the singlet pairs
as the topological order parameters. As for the local topological description by the covalent
bonds, see [1].) For example, there can be many kinds of quantum dimer states for frustrated
Heisenberg models, such as column dimers, plaquette dimers, etc. As is clear, one cannot
find any classical local order parameters to characterize them. However, our topological order
parameters can distinguish them as different phases not by just a crossover.

3. Quantized Berry phases for the topological order parameters of frustrated Heisenberg
spins

Frustration among spins prevent them from forming a magnetic order and their quantum ground
states tend to belong to quantum liquids without any symmetry breaking. Since they do not
have any local order parameters, even if they have apparent different physical behaviours, it is
difficult to make a clear distinction as a phase not just as a crossover. We apply the general
scheme in [1] to classify these frustrated spin systems. Defining quantized Berry phases as
0 or π , the spin liquids are characterized locally, reflecting their topological order. We can
distinguish topological phases which are separated by local quantum phase transitions (local
gap closings).

We consider the following spin 1/2 Heisenberg models with general exchange couplings,
H = ∑

i j Ji jSi · S j . We allow frustrations among spins. We assume that the ground state is
unique and gapped. To define a local topological order parameter at a specific link 〈i j〉, we
modify the exchange by making a local SU(2) twist θ only at the link as

Ji jSi ·S j → Ji j
(

1
2 (e

−iθ Si+Sj− + eiθ Si−Sj+)+ Siz S jz
)
.

Writing x = eiθ , we define a parameter-dependent Hamiltonian H (x) and its normalized
ground state |ψ(x)〉 as H (x)|ψ(x)〉 = E(x)|ψ(x)〉, 〈ψ|ψ〉 = 1. Note that this Hamiltonian
is invariant under the time-reversal (TR) �T, �−1

T H (x)�T = H (x).1 Also note that by
changing θ : 0 → 2π , we define a closed loop C in the parameter space of x . Now we
define the Berry connection as Aψ = 〈ψ|dψ〉 = 〈ψ| d

dxψ〉 dx . Then the Berry phase along the
closed loop C is defined as iγC(Aψ) = ∫

C Aψ [13]. In addition to the system being gapped,
we further assume that the excitation gap is always finite (for ∀x), to ensure the regularity
of the ground state [3]. This may not always be true, since the gap can collapse by local
perturbation as an appearance of localized states (edge states) [10]. Note that by changing a
phase of the ground state as |ψ(x)〉 = |ψ ′(x)〉ei�(x) , the Berry connection gets modified as
Aψ = A′

ψ + i d� [13, 3]. This is a gauge transformation. Then the Berry phase, γ C , also

1 The TR is defined as �T = K ⊗ j (iσ j y), as the anti-unitary operation (K : complex conjugation). It operates for

a state |G〉 = ∑
J={σ1,...,σN } CJ |σ1, σ2, . . . , σN 〉, (σi = ±1) as �T|G〉 = ∑

C∗
J (−)

∑N
i=1(1+σi )/2| − σ1, . . . ,−σN 〉.

Then spins get transformed as ∀ j,S j → �−1
T S j�T = −S j and Si · S j is a TR invariant.
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Figure 1. One-dimensional Heisenberg models with alternating exchange interactions with periodic
boundary condition (left). Numerically evaluated quantized Berry phases (right). JA, JA′ > 0 and
JF < 0. The results are independent of the system size.

changes generically. This implies that the Berry phase is not well defined without specifying
the phase of the ground state (gauge fixing). It can be fixed by taking a single-valued reference
state |φ〉 and a gauge-invariant projection into the ground state P = |ψ〉〈ψ| = |ψ ′〉〈ψ ′| as
|ψφ〉 = P|φ〉/√Nφ , Nφ = ‖P|φ〉‖2 = |ηφ|2, ηφ = 〈ψ|φ〉 [3, 1]. We here require the
normalization, Nφ , to be finite. When we use another reference state |φ′〉 to fix the gauge, we
have |ψφ〉 = |ψφ ′ 〉ei�, � = arg (ηφ − ηφ ′). Due to this gauge transformation, the Berry phase
gets modified as γC(Aψφ) = γC(Aψφ′ )+�, � = ∫

C d�. Since the reference states |φ〉 and
|φ′〉 are single-valued on C , the phase difference � is just different by � = 2πMC with some
integer MC . Generically this implies that the Berry phase has a gauge-invariant meaning just
up to the integer as

γC ≡ −i
∫

C
A, mod 2π.

By the TR invariance, the Berry phase get modified as γC(Aψ) = ∑
J C∗

J dC j =
− ∑

J CJ dC∗
j = −γC(A�ψ) since

∑
J |CJ |2 = 1 [1]. Therefore to be compatible with

the gauge ambiguity, the Berry phase of the unique TR-invariant ground state, |ψ〉 ∝ �|ψ〉,
satisfies γC(Aψ) ≡ −γC(Aψ)(mod 2π). Then it is required to be quantized as

γC(Aψ) = 0, π (mod 2π).

These quantized Berry phases have a topological stability since any small perturbations cannot
modify them unless the gauge becomes singular. Here we note that the Berry phase of the
singlet pair for the two-site problem is π [1]. Now let us take any dimer covering of all sites
D = {〈i j〉} and assume that the exchange interaction is nonzero only on these dimer links; then
the Berry phases, π , pick up the dimer pattern D. Now imagine an adiabatic process to include
the interactions across the dimers. Due to the topological stability of the quantized Berry phase,
they cannot be modified unless the dimer gap collapses. This dimer limit presents a non-trivial
pattern of a quantized Berry phase and shows the usefulness of the quantized Berry phases as
local order parameters of singlet pairs. To show the validity of the concept, we diagonalized
the Heisenberg Hamiltonians numerically by the Lanzcos method and obtained the quantized
Berry phases.

The first numerical examples are Heisenberg chains with alternating exchanges. When the
exchanges are both antiferromagnetic as JA > 0 and J ′

A > 0, it is a spin–Peierls or dimerized
chain. In this case, the Berry phases are π on the links with the strong exchange couplings
and 0 on the one with the weak couplings (figure 1). This is expected from the adiabatic
principle and the quantization2. When one of them is negative as JA > 0 and JF < 0, the
calculated Berry phases are π for the antiferromagnetic links and 0 for the ferromagnetic ones.
This is independent of the ratio JA/JF. Since the strong ferromagnetic limit is equivalent to

2 As for the gapped phase of the S = 1
2 antiferromagnetic X X Z model with Ising anisotropy, there occurs a local gap

closing. We need to use the non-Abelain Berry phase [1, 14].
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Figure 2. One-dimensional Heisenberg models with NN and NNN exchanges (left) with periodic
boundary condition. Numerically evaluated quantized Berry phases (right). (a)–(c) Three different
exchange configurations of J = 1 and J ′ = 2.

the spin 1 chain, this means that the quantized Berry phases of the spin 1 chain (Haldane
phase) are given by the uniform π s. Further analysis on the S = 1 systems will be published
elsewhere [14]. The next numerical examples are spin chains with nearest-neighbour (NN) and
next-nearest-neighbour (NNN) exchanges as ladder of triangles (figure 2). These are typical
systems with frustrations. (a) and (b) are two different but specific configurations in which one
may adiabatically connect the system with different dimer coverings by the strong coupling
bonds. In these cases, the quantized Berry phases are π for the strong coupling links and 0
for the remaining links. This is consistent with the adiabatic principle. We note here that it
is difficult to make a qualitative difference between the two quantum liquids by conventional
methods. However, we have made a clear distinction between them as two different topological
phases. The present scheme is not only valid for these simple situations but is also useful for the
generic situation. For example, as for a system in the figure 2(c), we cannot use the adiabatic
principle simply. However, the quantized Berry phases show non-trivial behaviours and this
makes a clear distinction that the phase (c) is topologically different from the ones in (a) and
(b) as an independent phase not just as a crossover. A local quantum phase transition separates
them by the gap closing. As is now clear, the present scheme is quite powerful in making a
local characterization of topological quantum insulators.
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